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DeviceNet™ Unplugged 
A View “Under the Hood” for End Users 

Introduction 
This paper presents an operational description of DeviceNet™, a low-level industrial application layer protocol for indus-
trial automation applications. DeviceNet connects simple industrial devices, like sensors and actuators, with higher-level 
devices such as Programmable Controllers. Built on the standard CAN (Controller Area Network) physical communica-
tions standard, DeviceNet uses CAN hardware to define an application layer protocol that structures the task of configur-
ing, accessing, and controlling industrial automation devices. 

This paper is intended for the DeviceNet user who desires a deeper understanding of DeviceNet to provide much more 
information than is typically found in a DeviceNet network overview but much less than the several hundred page De-
viceNet specification. This paper can also provide a starting point for developers considering adding DeviceNet commu-
nications to their product. 

An abstract of a 200+ page specification is, by definition, incomplete. Admittedly, some aspects of the technology are 
only lightly covered while others are not covered at all. Topics judged to provide the most insight into DeviceNet opera-
tion or clear up common misconceptions received priority. 

A Quick Overview 
DeviceNet is an application layer protocol. What does that mean? One way to look at it is DeviceNet deals more with 
application data than a lower level or non-application layer protocol. For example, a link layer protocol is designed simply 
to move some bytes from point A to point B. It has no interest in and conveys no inherent information regarding the con-
tents of the message. Because DeviceNet is an application layer protocol, its messages do convey information. A De-
viceNet explicit message has specific information in specific bytes of a message. There is a byte for a Class number, a 
byte for a service code, and so on.  

Now, if DeviceNet is an application layer protocol, what are the lower protocol layers that transport its messages? 

DeviceNet and CAN 
Controller Area Networking (CAN) is a communications standard with a rather prolific set of offspring that includes De-
viceNet, Can Open, Can Kingdom and several hundred other offspring all over the world.  

CAN is a serial communications standard for intelligent devices to communicate with each other. Unlike many other com-
munication standards that provide fast data rates with thousands or millions of data bytes in a single frame, CAN has a 
bit rate that tops out at one mega baud. Most industrial applications don’t need that speed, but instead use the lowly 
125K baud. Also, where other standards move thousands of bytes in a single frame, CAN only moves 8 bytes of data. 

But where speed and capacity are strengths for many of the other standards, CAN’s strength is its low overhead and 
simple physical interface.  With its small packet size, even at 500K baud, a frame with eight bytes of data is only on the 
network wire for a quarter of a millisecond, fast enough for many control applications. Additionally, even an under-
powered 8-bit microcontroller can get the job done, needing as little as 4K of program memory and 256 bytes of RAM to 
support a CAN application. 

CAN was created by Bosch in Germany in March of 1985. The Bosch Company designed it to replace automotive wiring. 
In the early days of specification version 1.2, CAN messages contained an eleven bit identifier providing the capability to 
address 2047 identifiers. In 1992, CAN Specification 2.0 extended the identifier size to 29 bits, providing up to 56 million 
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unique identifiers. As both specifications are still in use, sometimes on the same wire, the original 1.2 specification is called 
Part A and the new specification 2.0 is termed part B. A unique attribute of CAN is that only two of the OSI Reference Model 
layers are defined, the Data Link Layer and the Physical Layer. (Figure 1) The CAN Data Link Layer is normally split into 
two sub layers, the Physical Signaling sub-layer and the Media Access Control (MAC) sub-layer.  

Allen-Bradley (Rockwell Automation) created DeviceNet as an application layer protocol on top of CAN in the 1990s. Allen 
Bradley selected CAN as the DeviceNet Physical Layer for a number of reasons including: 

 

♦ An extremely robust physical layer 

♦ Open Technology  

♦ Small processor footprint (RAM, ROM Requirements) 

♦ Inexpensive physical components with multiple sources 

 
One of the most extraordinary features of CAN (and DeviceNet) is bitwise arbitration. Bitwise Arbitration is the process 
which CAN uses to prioritize messages without losing any network bandwidth. On a CAN network, “zero” bits dominate 
“one” bits. As a device transmits a message it listens to the bits on the network. If a device transmits a one and hears a 
zero, it knows that a higher priority message is being transmitted and it discontinues transmitting. The node with the higher 
priority message hears the bits it is transmitting and never knows it conflicted with a lower priority message. The message 
sequence on the network is preserved. 
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Figure 1 — CAN and the OSI Model 
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DeviceNet and CIP 
The Communications and Information Protocol (CIP) is a communications protocol for transferring automation data be-
tween two devices. DeviceNet is a combination of the CIP Protocol and the CAN Physical Layer. In the CIP Protocol, 
every network device represents itself as a series of objects. Each object is simply a grouping of the related data values 
in a device. For example, every CIP device is required to make an Identity object available to the network. The identity 
object contains related identity data values called attributes. Attributes for the identity object include the vendor ID, date 
of manufacture, device serial number and other identity data. CIP does not specify at all how this object data is imple-
mented, only what data values, usually called attributes, must be supported and that these attributes must be available 
to other CIP devices. 

The Identity object is an example of a required object. There are three types of objects defined by the CIP protocol, Re-
quired Objects, Application Objects, and Vendor-Specific Objects. 

Required Objects 
Required objects are required by the specification to be included in every CIP device. These objects include the Identity 
object, a Message Router object and a Network object. 

IDENTITY OBJECT 

The identity object contains attributes that identify the DeviceNet device. Attributes for the identity object include the ven-
dor ID, date of manufacturer, device serial number, and other identity data. 

MESSAGE ROUTER OBJECT 

The Message Router is an object that exists to route explicit messages and explicit responses to and from the Connec-
tion Object. For example, an Explicit Message request is received by the Connection Object and passed to the Router 
Object. The Router opens the DeviceNet (CIP) package and identifies the target object. The message is passed to the 
target object for processing. The response from the target object follows the identical course in reverse. 

Remember that this is only the external operating behavior of the Message Router Object. The implementation of this 
object can and does follow a much more concise and efficient mechanism. 

DEVICENET OBJECT 

The DeviceNet object contains attributes that identify the Port, Baud Rate, MacID (DeviceNet Address), vendor ID and 
other physical operating parameters. 

CONNECTION OBJECT 

The Connection object contains the attributes that control the processing of explicit and I/O messages. Most importantly, 
the attributes for the I/O Path and Connection Type control how often the DeviceNet device produces data and the path 
where the connection object “finds” the data to produce. 

Another required object is the Message Router Object. The DeviceNet specification describes these objects in excruciat-
ing detail. 

Application Objects 
Application objects are the objects that define the data encapsulated by the device. These objects are specific to the de-
vice type and function. For example, a Motor object on a Drive System has attributes describing the frequency, current 
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rating and motor size. An Analog Input object on an I/O device has attributes that define the type, resolution and current 
value for the analog input. 

Application layer objects are predefined for a large number of common device types. All CIP devices with the same de-
vice type (Drive Systems, Motion Control, Valve Transducer…etc) must contain the identical series of application ob-
jects. The series of application objects for a particular device type is known as the device profile. A large number of pro-
files for many device types have been defined. Supporting a device profile allows a user to easily understand and switch 
from a vendor of one device type to another vendor with that same device type. 

A device vendor can also group Application Layer Objects into assembly objects. These super objects contain attributes 
of one or more Application Layer Objects. Assembly objects form a convenient package for transporting data between 
devices. For example, a vendor of a Temperature Controller with multiple temperature loops may define assemblies for 
each of the temperature loops and an assembly with data from all of the temperature loops. The user can then pick the 
assembly that is most suited to the application and how often to access each assembly. For example, one temperature 
assembly may be configured to report every time it changes state while the second may be configured to report every 
second regardless of a change in state. 

Assemblies are usually predefined by the vendor but CIP also defines a mechanism in which the user can dynamically 
create an assembly from application layer object attributes. Dynamic assemblies are rather rare as most end users pass 
on defining their own assemblies. 

Vendor Specific Objects 
Objects not found in the profile for a device class are termed “Vendor Specific.” The vendor includes these objects as 
additional features of the device. The CIP protocol provides access to these vendor extension objects in exactly the 
same method as either application or required objects. This data is strictly of the vendors choosing and is organized in 
according to the device vendor. 

In addition to specifying how device data is represented to the network, the CIP protocol specifies a number of different 
ways in which that data can be accessed such as cyclic, polled and change-of-state access. 

CONNECTIONS AND CONNECTION  IDS 
DeviceNet is a connection-based network similar to Ethernet’s TCP/IP. When two devices establish a connection, they 
exchange Connection ID Numbers. For most DeviceNet Messaging, messaging between a Master Device and a Slave 
device, the Connection IDs are predefined, enabling low resource devices to optimize processing of these messages. 
Using the filters provided in a lot of CAN controllers, these messages are easily identified and processed while all other 
messages are quickly discarded. 

For all but a few types of connections, two connection IDs are allocated. One, the produced Connection ID is allocated 
for the message transmitted by the device. The second is the consumed Connection ID, the Connection ID used in the 
message consumed by the device. 

The Connection IDs are an integral part of DeviceNet messaging and are a part of the message prioritization scheme. 
The CAN Identifier in every DeviceNet message is composed in part of the DeviceNet Address and the Connection ID 
for the message.  

The lower the Connection ID/DeviceNet address combination, the higher the priority of the message on the network. In 
some networks with certain types of messaging schemes, using lower Mac ID addresses for higher priority devices is a 
valid optimization strategy. 
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Unconnected Message Connections 
Every DeviceNet device contains a special virtual access port called the Unconnected Message Port. This virtual port 
provides a way for a device to send a few predefined messages to a DeviceNet device without first making a connection. 
The predefined messages are limited to creating and deleting other connections. 

The Unconnected Message Port is part of the Group 2 Connection Set, the set of connections used by DeviceNet Slave 
devices. This connection is designed for very unsophisticated, low resource devices. In fact, this connection set is ex-
actly how a DeviceNet Master allocates a DeviceNet Slave, by sending messages on the Group 2 Unconnected Mes-
sage Port. 

More sophisticated devices also implement the Unconnected Message Port. For these devices, this port can be used to 
create Explicit Connections on Connection Groups 1 or 3, connection groups which are used to transfer Explicit Mes-
sage Requests. 

Connected Message Connections 
Connected Messages are messages produced and consumed across a connection between two devices. Connected 
messages can be either Explicit Response/Request type messages or I/O messages containing formatted data. Con-
nected messages can also be messages transferred at some specific data rate (cyclic messages), on response to a poll 
(poll response messages), or on a Change-Of-State (COS messages).  The data may be public, predefined assemblies 
of data or proprietary data specific to a particular vendor (proprietary peer message). The fact that two devices are con-
nected does not imply anything about the data being transferred over the connection. 

Master Slave Connected Messaging 
DeviceNet devices can be classified as Master or Slave devices. Master devices are devices that gather Input data from 
multiple slave devices and distribute Output data to the slave devices. Master devices are also referred to as Scanners 
and Client devices, while slaves can be referred to as Servers. Master and Slave devices use a set of connections and 
message sequences that are termed the “Master Slave Connection Set.” This set of connections and messages provides 
a convenient way for a DeviceNet Master device to allocated, configure and transfer I/O data to an unsophisticated De-
viceNet Slave. 

The Predefined Master Slave Connection Set is described in great detail later in this document. 

I/O Connection Messaging 
I/O Connections are connections that distribute Output data to and gather Input data from DeviceNet Slaves. The direc-
tion of data transfer is always discussed in terms of the DeviceNet network. Data which is moved from the network into a 
device is Output data. Data which is moved from a device to the DeviceNet network is Input data. 

I/O Connections for the Predefined Master Slave Connection Set are discussed in detail later in this document. 

Offline Connection Messaging 
DeviceNet now includes a connection set for devices in the Communication Faulted State. A DeviceNet device is Com-
munication Faulted if, on power up, it detects another device with the same MacID (DeviceNet Address). A device in the 
Communication Faulted state is unable to transfer any data or perform any application operations until the fault is 
cleared. The fault is typically cleared by manually re-addressing the network so that no devices exist with duplicate ad-
dresses. 
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If many devices have the identical address, manually re-addressing the network is very time consuming and difficult. Ei-
ther the switches on the device must be individually and manually changed or all devices must be removed from the net-
work. Once all devices are removed each software addressable device can be added to the network and re-addressed 
one at a time by a configuration tool. 

This time consuming and tedious procedure is what the Offline Connection Set is designed to address. Using the Offline 
connection set, a configuration tool can connect to a Communication Faulted device, change its address and then reset 
it. Since many Communication Faulted devices may be sharing an address, the configuration tool uses the vendor serial 
number to identify a specific device on the network. By flashing the LEDs of that device in a specific patter, the tool can 
identify the faulted device to the user who can assign an address to that device. 

Unfortunately, a minority of devices support the Offline Connection Set.  

DEVICENET MESSAGING 
There are three kinds of messages that can be transmitted between DeviceNet nodes. Peer messages are unformatted 
messages between any two nodes. Explicit messages are Request/Response type messages from a DeviceNet Master 
to a DeviceNet slave which Get or Set an attribute in a DeviceNet Object. I/O Messages are messages which transfer 
predefined I/O data between a DeviceNet Master and a DeviceNet Slave.  

Peer Messaging 
Peer Messaging in DeviceNet is a widely misunderstood concept. Though Peer Messaging is supported, there is no 
practical way for devices manufactured by different vendors to communicate over peer communication channels. 

Peer messaging is simply the exchange of messages from one DeviceNet device to another over any non-Master Slave 
connection. If two devices both support unconnected messaging and one of the devices can issue an unconnected mes-
sage, a peer communication channel can be created between the two devices. 

Unfortunately, creation of the peer communication channel does not imply that the two devices can exchange meaningful 
data. Unlike the Group 2 communication set (Master/Slave), there is no well-defined rule or organization for the data ex-
changed on a Peer Communication channel. If a DeviceNet temperature controller sends a temperature over a peer con-
nection to a display, there is no way for the display to decipher the data. The temperature may be in Celsius or Fahren-
heit. It may be 16 bits or 32 bits, scaled or un-scaled. Unlike an I/O message between a DeviceNet Master and a Slave, 
there is no implied structure or meaning to the bytes sent on a peer communication channel. 

Most implementation of Peer communications is between devices manufactured by the same vendor. The vendor de-
fines the format and contents of the message so that each device can understand the contents of the message. Barcode 
vendors sometimes use peer messaging to create what is called a “poor man’s universal scanner.” Using 2 or more 
scanners around a target, the barcode device that reads the barcode sends a message to the other scanners indicating 
that it has the barcode and that they can discontinue scanning.  

Explicit Messaging 
Explicit Messages are request/response messages that are issued by a DeviceNet Master to request a service from a 
DeviceNet Slave over an Explicit Message Connection. The Service Code field in the explicit message identifies the re-
quested service with the remainder of the message containing any data required to execute the service. The 
GET_ATTRIBUTE Service Code is a typical request carried in an Explicit Message. GET_ATTRIBUTE returns the value 
of an attribute to the device issuing the Explicit Message. Explicit messages are used by all devices, including configura-
tion tools. 

GET and SET Attribute Service codes are the most common messages carried by Explicit Messages. Service Code data 
associated with these messages includes: 
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♦ Object Class 

  The Object Class Number of the Object in the target device. 

♦ Instance Number 

  The specific occurrence of the Object Class in the target device. For example, a device  
  with 16 Input Points may be implemented with one Input Object with 16 instances, one for 
  every input point. 

♦ Attribute ID 

  The index to the specific value in the object being addressed by the GET or SET Attribute 
  service. 

♦ Attribute Value (Set Only) 

  The new value for the attribute. 

A GET Service request to obtain the device Serial Number looks like Table 1 below: 

Table 1— GET Service Request

 
* This is unique for each connection. 

All Explicit Messages are routed through the Explicit Message Router inside the DeviceNet device. The Router validates 
the Object Class. If the Explicit Message contains an invalid Class, the router rejects the message and returns an error 
code to the requester. If the Router validates the Object Class it passes it to the target Object for processing. The re-
sponse from the target object is returned to the requester through the router. Note that this is only the network view of 
the device operation and may or may not be how the device is implemented.  

One interesting application of Explicit Messages is that they can be used to read I/O data. An Explicit Message can be 
formed to get the attribute data containing the I/O data. The I/O data can be retrieved from either the source object gen-
erating the data or the assembly object containing the data ready to transfer to the Master. 

An Explicit Message connection may support a fragmentation mechanism for messages greater than 8 bytes. Frag-
mented Explicit Messages contain only six bytes of data. Two header bytes to manage the fragmentation are added to 
every message. One header byte indicates the fragmented message position (First, Last, Middle) in the message se-
quence while the second byte contains a sequence number.  

Unlike I/O Message Fragmentation, Explicit Messages must be acknowledged. The receiver (Master or Slave device) 
must transmit a message indicating acceptance of the fragmented message before the next message in the sequence is 
transmitted. 

DeviceNet devices are not required to support Explicit Message fragmentation. Most devices do not, as Explicit Message 
fragmentation and the required acknowledgement handling requires a tremendous amount of device resources. A little 
known fact is that most DeviceNet device names (an ASCII string) are eight or less bytes in length to avoid support of 
explicit message fragmentation as longer product names would be transferred to the Master as a fragmented message 
sequence. 

I/O Messaging 
I/O Messages transfer predefined I/O data between a DeviceNet scanner and an I/O device.  Traditionally Inputs and 
Outputs are referenced from the point of view of the network. An Input is a data point produced by an I/O device and 

Connection ID Service Code Object Class Instance Attribute ID 

(CID)* 0E Hex 1 1 6 
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transferred to a scanner over the network. An Output is a data point consumed by an I/O device and transferred from a 
scanner to a device over the DeviceNet network. 

I/O data is contained in a device in one or more device assemblies. The Input Assembly Object identifies the data pro-
duced by the Device. Attribute three of each Input Assembly object is the attribute containing the data to produce, usu-
ally a collection of data from one or more application objects. Figure 2 includes an example of an Input Assembly for a 
simple flow meter. 

Output Assembly objects identify data consumed by the device. Attribute three of each Output Assembly identifies the 
specific data consumed by the device, usually a collection of data. The data consumed is destined for one or more appli-
cation objects as it is received. Figure 2 also includes an example of an Output Assembly for our simple flow meter. 

A device can have multiple Input and Output Assemblies. For example, a barcode reader device may have some set of 
discrete Inputs and Outputs. The assembly objects for the barcode device may include an assembly with only barcode 
data, an assembly with just I/O data, or an assembly which contains both barcode and I/O data. This provides the ulti-
mate flexibility for the end user. An end user that doesn’t use the I/O on the barcode reader selects the first assembly. A 
user who is using the barcode reader as a discrete I/O device might select the second assembly, while the user using 
both may select the last assembly. 

In some cases the I/O connection must be configured to reference an assembly other than the default. In the Connection 
object there are a minimum of two connection instances. One instance is for the Explicit connection and the other for the 
I/O connection. The Explicit connection describes the how Explicit Messages are transferred. The I/O connection deter-
mines how messaging is managed. 

Figure 2 — Example DeviceNet Assemblies for a Flow Meter 
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The Connection Path attribute in the I/O connection is the Assembly Object containing the data to consume and pro-
duce. There are a number of different ways to specify the connection path, most of which require more explanation than 
can be provided in this document. 

To change the Connection path, a user can use an Explicit Message to set this path directly or, in many cases, the ven-
dor of the device provides a selector attribute in one of the application objects to more easily set the path. If a device 
only supports direct management of the Connection Path attribute, the user may have to consult the device documenta-
tion or the DeviceNet specification to correctly specify the path. 

I/O messages come in a number of flavors: 

 

♦ Polled 

  Polled messages are request/reply messages issued to the polled connection. Polled 
  messages are sent by the scanner at the rate of it’s choosing. 

♦ Cyclic 

  Cyclic messaging is scheduled messaging. In this mode, the DeviceNet Slave device peri
  odically issues messages to the Master at some scheduled rate.  

♦ Change of State (COS) 

  COS messages are messages which are produced on the I/O connection on an event. Ad
  ditionally, the DeviceNet slave device issues a Heart Beat message. The heart beat lets 
  the scanner know that the slave device is still alive. 

 
All messages transfer an I/O Assembly between the Scanner and the Adapter. Scanner and Adapter are alternate terms 
used by some DeviceNet folks to refer to the DeviceNet Master and Slave respectively. 

I/O messages also implement a fragmentation scheme for I/O data greater than the CAN Standard 8 data bytes. Unlike 
the fragmentation protocol used for Explicit Messages, fragmentation for I/O Messages is not acknowledged and not se-
quenced. The multiple messages are transmitted with no special encoding or sequence number. The receiver simply 
reconstructs the I/O data in the order that the messages are received.  

Connection Establishment Messaging 
There are only two requirements for successfully placing a new device on a network. One, the baud rate of the device 
must match the baud rate of all other devices on the network and two, the device address must not conflict with an ad-
dress of another device. 

Baud Rate 

There are three baud rates for DeviceNet networks; 125K, 250K and 500K. The baud rate limits the length of the net-
work. Very simply, CAN networks require every device to listen to its own bits as they are transmitted and to set the ac-
knowledge bit in each and every message transmitted on the network. The implementation of this latter requirement dic-
tates the maximum network length for each baud rate: 

Table 2 — Maximum Baud Rate 

Baud Rate Trunk Length 

125K 500 Meters / 1640 Feet 

250K 250 Meters / 820 Feet 

500K 100 Meters / 328 Feet 
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Identifying the current baud rate of a device can be a challenge. Unless a device is configured using dipswitches and the 
baud rate can be discerned from the switches, there is no way to know what the baud rate might be. One of the reasons 
that a device may not connect is a baud rate which is different than the network baud rate. If you don’t know the baud 
rate of a DeviceNet device, the only sure method to find out is to try to connect to it at each baud rate. 

DeviceNet Address 

An integer is assigned to every DeviceNet device on a network. This integer is the device address, or MacID. MacID is 
short for Media Access Identifier. There are a maximum of 64 nodes on a DeviceNet network, and they occupy MacIDs 0 
to 63 and can be set using switches or using a DeviceNet configuration tool. No two devices can occupy the same Ma-
cID. 

When powered on, each DeviceNet device sends out a message requesting access to the network. Part of this message 
is the unique device serial number. If more than one device from the same vendor and with the same vendor id attempts 
to access the network at the same instant, the device with the lowest DeviceNet serial number is successful. All the other 
devices fault. 

Duplicate MacID Sequence  

The DeviceNet protocol requires that devices transitioning from the offline to on-line state follow a very specific message 
sequence with specific timing. This sequence relies on the Duplicate MacID request message, which consists of the de-
vice Vendor ID and Serial Number. The Vendor ID is the integer ID assigned to the vendor by the ODVA, while the serial 
number is a unique long integer assigned by the vendor. Because the vendor is required to assign a unique serial num-
ber to each device, no two DeviceNet devices on the planet can have the same vendor/sequence number combination. 
This ensures that no two Duplicate MacID request messages can have the same contents. If two devices from the same 
vendor attempt access to the network at the same instant during the Duplicate MacID sequence, the device with the low-
est vendor/sequence number combination will get access first. 

The Duplicate MacID sequence consists of sending two consecutive Duplicate MacID request messages with a one sec-
ond delay between messages. During the delay any online device with the same MacID must issue a Duplicate MacID 
Response Message. If the device joining the network receives a Duplicate MacID Response Message it transitions to the 
Communication Fault state. If no response is received after the second one second delay, the device can officially transi-
tion to the online state. 

There are other subtle requirements for DeviceNet devices. For example, if a device in the online state ever receives a 
Duplicate MacID response message it must immediately transition to the offline state. Receiving a Duplicate MacID re-
sponse indicates that there is another device on the network in the online state with the same MacID. 

Miscellaneous Messages 
A message that is directly opposite the Duplicate MacID request message is the device shutdown message. This mes-
sage broadcasts the fact that a device is transitioning from the online state to the offline or non-existent state. This is an 
optional message that can be used by a device to signal a fault condition, remote command, or some other reason for 
taking itself off the network. 

Another infrequently used message is the Device Heartbeat message. Devices that support Change-Of-State (COS) 
operation use the Device Heartbeat (DHB) message to communicate to the Master that they are operational. If no COS 
message containing new data is produced for a set duration the device produces the DHB message. 

Error States  

DeviceNet devices can assume any of the states listed in Table 3. 
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DEVICENET DEVICE TYPES 
There are three basic DeviceNet device types; Master Devices, Slave Devices, and Peer Devices. A device can support 
any one or all of the device types simultaneously.  Peer-to-peer messaging is supported by DeviceNet technology, but 
there is no way for two devices to transfer data across a peer connection. Peer messaging, when it is used, is a proprie-
tary data transfer.  Thus, this paper will not cover Peer Devices in detail. 

Master Devices (Scanners) 
Master Devices, sometimes known as Scanners or occasionally Client devices, are devices that “own” DeviceNet Slave 
Devices. A Master can own many or all the Slave devices but a slave can only be owned by one DeviceNet Master at a 
time. 

A Master device must first “allocate” a DeviceNet Slave device to obtain ownership. The allocation process, described 
later in this document, is a set of handshaking messages in which the Master device requests control of the slave and 
then configures the slave to transfer a particular set of data at a data rate specified by the Master. The typical set of mes-
sages that request ownership is known as the “Predefined Master Slave Connection Set”. 

The Allocation process is simply an Open Explicit Request message issued on the Unconnected Message Port request-
ing ownership of the Slave device. If the slave accepts ownership it replies in the affirmative and creates the connections 
requested by the Master Device in the request message. Usually the Master requests both an explicit and an I/O con-
nection. 

Table 3 — Error States

 

NON-EXISTENT The device has shutdown due to an internal error or some remote command. 

UNALLOCATED The device has successfully joined the network but is not currently “owned” by a 

DeviceNet Master device. The LED indicator for an unallocated device flashes 

green. 

TIMED OUT Messages have failed to arrive on one or more connections with the Master de-

vice. This is typically a recoverable error. The LED indicator on a device will typi-

cally flash green in this state. 

FAULTED The device has detected an internal error or received a Duplicate MacID re-

sponse message. This is not a recoverable error. The LED indicator on a device 

will typically be solid red in this state. 

BUSOFF In the BusOff state the device has detected significant network errors and has 

removed itself from network operation. This is typically a hardware failure in the 

device circuitry. 

NON-EXISTENT The device has shutdown due to an internal error or some remote command. 

UNALLOCATED The device has successfully joined the network but is not currently “owned” by a 

DeviceNet Master device. The LED indicator for an unallocated device flashes 

green. 

TIMED OUT Messages have failed to arrive on one or more connections with the Master de-

vice. This is typically a recoverable error. The LED indicator on a device will typi-

cally flash green in this state. 

FAULTED The device has detected an internal error or received a Duplicate MacID re-

sponse message. This is not a recoverable error. The LED indicator on a device 

will typically be solid red in this state. 

BUSOFF In the BusOff state the device has detected significant network errors and has 

removed itself from network operation. This is typically a hardware failure in the 

device circuitry. 

State Description 
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A Slave may deny the allocation request from the Master Device. Slaves may deny a request if they are already allo-
cated to another Master or if the Master device requests an unsupported connection type. For example, if the Master 
requests a cyclic connection and the DeviceNet Slave only supports polled connections the allocation request is denied. 

Once the Slave accepts the connection request, the Master uses the Explicit Message connection to configure the I/O 
connection. Configuration includes setting the two most important attributes of the I/O connection; the Expected Packet 
Rate and the produced and consumed connection paths. The Expected Packet Rate is the rate at which the Master ex-
pects to scan the DeviceNet Slave device. If the Master fails to scan at this rate, the Slave device enters a Timed-Out 
state and must be explicitly reactivated by the Master Device. The Produced and Consumed connection paths are the 
paths to the application objects where data is respectively generated or stored. Generally these paths refer to one of the 
assemblies supported by the Slave device. 

Scanning can begin once the Slave device is fully configured. During scanning, the Master device produces and con-
sumes Slave data. The Master produces data for the Slave’s Output Assembly, which is identified by the Consumed 
Connection path in the Slave. The Master consumes data generated from the Slave’s Input Assembly, which is identified 
by the Produced Connection path in the Slave’s Output Assembly.  

Slave Devices (Servers) 
Slave Devices, sometimes known as servers, are devices that receive and transmit application specific data to and from 
a Master device. Slave devices, by definition, implement the Predefined Master Slave Connection Set described in the 
previous section. 

Slave devices must support at least one or more of the following I/O Message transport types: 

POLLING 

In this operation mode, the Master device transmits I/O data to the slave device at some rate. This rate must be greater 
than the rate specified by the Expected Packet Rate when the connection was configured. The Slave device responds to 
a polling message by producing the data in its input assembly. 

CYCLIC 

In Cyclic Messaging, the Master device transmits I/O data to the Slave device at some rate.  This rate must be greater 
than the rate specified by the Expected Packet Rate when the connection was configured. The Slave device may or may 
not be configured to respond immediately. In the typical situation, the Slave device produces its I/O data at a frequency 
configured by the Master device. 

CHANGE-OF-STATE (COS) 

In COS Messaging, the Master device transmits I/O data to the Slave device at some scan rate greater than the Ex-
pected Packet Rate. The Slave device may or may not be configured to respond immediately. In the typical situation, the 
Slave device produces its I/O data ONLY when the application layer indicates data has changed or upon expiration of 
some transmission timer, also known as a heartbeat timer. 

A Master device implicitly transmits its current operating mode with every I/O scan. If the Master device (typically a Pro-
grammable Controller) is in a non-run mode, the Master produces an I/O message with zero data bytes known as an 
IDLE mode message. The Slave device can then implement whatever functionality is required of the device when its 
master is not in run mode. Messages received with at least a single byte of I/O data indicate to the Slave device that the 
Master is now in Run mode. DeviceNet does not require a slave device to implement any specific behavior when a Mas-
ter device is in an IDLE mode. 

Master devices such as Configuration tools often allocate the Predefined Connection Set of a Slave device requesting 
only the Explicit Message request connection. These devices typically allocate the Explicit Message connection, GET or 
SET a particular attribute, and then release the connection set. If these devices are currently allocated by another Master 
device, the Master owning the DeviceNet slave mimics the messages of an unconnected slave device, but only accepts 
the Explicit Message connection. In this fashion, a configuration tool can GET or SET an attribute of a DeviceNet slave 
even if it is already owned by a Master device. One of the frustrations of many users is that their SET attribute requests 
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fail because the devices are owned by a Master and actively being scanned. A DeviceNet slave must reject configuration 
requests which conflict with its current operating mode. 

Master Allocation Sequence 
A Master DeviceNet device makes a connection with a slave device using the following sequence: 

1) The Master issues an Unconnected Open Request Message to the DeviceNet Slave. A DeviceNet Slave device 
that supports unconnected messages allocates an Explicit Message connection and answers the Master’s Mes-
sage. The slave returns a connection id and describes the kind of messaging the slave can support. These 
Slaves then continue with step six of the message connection sequence. 

2) If a slave fails to answer the unconnected message request within one second, the Master issues a second Un-
connected Open Request Message. Slaves that don’t support unconnected messaging will ignore the Uncon-
nected Open Request message. 

3) A slave may answer the second request, allocate an Explicit Message connection, and return the connection ID 
to the master. These slaves then continue with step six of the message connection sequence. 

4) If a slave device fails to answer both Unconnected Message Requests the Master waits another second and 
issues a Group 2 Only Connection request. This message attempts an allocation of an explicit and/or IO con-
nection using the Group 2 Only port. This is a special port designed only to support simple allocation of slave 
devices. 

5) Slaves that fail to answer the Group 2 Only Connect request are marked as faulted. Some Masters may retry 
the allocation sequence periodically but are under no requirements to do so. 

6) Using the explicit connection made in the previous step, the Master configures the I/O connection. The Master 
sets the I/O timeout, connection paths, and other attributes required to operate the I/O connection. 

7) Once the I/O connection is complete, some Masters will delete the explicit connection as it is no longer needed. 

Physical Media Issues 
Creating a DeviceNet network requires certain physical conditions be met.  The following hardware and conditions must 
be included for the network and its devices to function properly. 

Indicators & Switches 
DeviceNet devices are configured using external hardware or software configuration tools. External hardware can in-
clude rotary switches, thumbwheels, dip switches, and other fixed input devices. Software configuration tools access the 
internal configuration of the device over the DeviceNet network or other communication port. Generic tools that can con-
figure any DeviceNet device use the DeviceNet network. Vendor specific tools that configure just the devices of that ven-
dor may either use the DeviceNet network or some other communication port on a device. 

Some end users prefer configuration using switches. Their philosophy is that a device can be easily replaced if all it 
takes is to set switches and connect the replacement devices. Other end users prefer software configuration. These us-
ers view switches as a potential source of device failure. 

Termination 
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DeviceNet requires termination resistors at each end of a DeviceNet trunk line. One ¼ watt, 120 ohm resistor should be 
placed at each end of the trunk between the CAN-H and CAN-L signals. The DeviceNet specification expressly recom-
mends that these termination resistors not be included within a device. 

Isolation 
Isolation of DeviceNet devices is required for devices with connections to external power supplies. 

ELECTRONIC DATA SHEETS (EDS) 
DeviceNet vendors are required to provide some type of documentation specifying how their device is configured. The 
document may be a set of printed instructions or some electronic file. At the minimum, the vendor must provide instruc-
tions for any external switches and a list of Class/Instance/Attribute values that control the configuration of the device. 
Some vendors create a “configuration assembly” containing the parameter data. This assembly provides a single attrib-
ute, a single point of reference where all device parameters can be read and written. 

Most vendors usually provide an electronic listing of the Attributes which configure a DeviceNet device. These Electronic 
Data Sheet (EDS) files may provide little to no information on the device, but they can also be very lengthy and complex. 
More extensive EDS files allow configuration tools to precisely configure the device using text identifiers for bit values 
and other very informative text strings. 

REFERENCES 
The ultimate reference for all DeviceNet devices is the specification from ODVA: 

DeviceNet Specification Release 2.0, Open DeviceNet Vendor Association 
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