
 1

Modbus TCP Unplugged
An Introduction to Modbus TCP Networking

 2

MODBUS TCP Unplugged
An Introduction to Modbus TCP Networking

Introduction
MODBUS TCP is a variant of the MODBUS family of simple, vendor-neutral communication protocols intended for super-
vision and control of automation equipment. Specifically, it covers the use of MODBUS messaging in an ‘Intranet’ or
‘Internet’ environment using the TCP/IP protocols. The most common use of the protocols at this time are for Ethernet
attachment of PLCs, I/O modules, and “gateways” to other simple field buses or I/O networks.

The MODBUS TCP protocol was published as a de-facto automation standard. Since MODBUS is already widely known,
there should be little information in this document that could not be obtained elsewhere. However, an attempt has been
made to clarify which functions within MODBUS have value for interoperability of general automation equipment, and
which parts are “baggage” from the alternate use of MODBUS as a programming protocol for PLCs.

This is done by grouping supported message types into conformance classes, which differentiate between those mes-
sages that are universally implemented and those that are optional, particularly those specific to devices such as PLCs.

Connection-Oriented
In MODBUS, data transactions are traditionally stateless, making them highly resis-
tant to disruption from noise and yet requiring minimal recovery information to be
maintained at either end.

Programming operations, on the other hand, expect a connection-oriented approach.
This was achieved on the simpler variants by an exclusive ‘login’ token, and on the
MODBUS Plus variant by explicit ‘Program Path’ capabilities which maintained a
duplex association until explicitly broken down.

MODBUS TCP handles both situations. A connection is easily recognized at the pro-
tocol level, and a single connection may carry multiple independent transactions. In
addition, MODBUS TCP allows a very large number of concurrent connections, so in
most cases it is the initiator’s choice whether to reconnect as required or reuse a
long-lived connection.

Developers familiar with MODBUS may wonder why the connection-oriented TCP
protocol is used rather than the datagram-oriented UDP. The main reason is to keep
control of an individual transaction by enclosing it in a connection that can be identi-
fied, supervised, and canceled without requiring specific action on the part of the
client and server applications. This gives the mechanism a wide tolerance to network
performance changes and allows security features like firewalls and proxies to be
easily added.

The original developers of the World Wide Web used similar reasoning when they
chose to implement a minimal Web query as a single transaction using TCP on well-
known port 80.

2

Rocco wonders:

Why TCP over UDP?

 3

Data Encoding
MODBUS uses a ‘big-endian’ representation for addresses and data items. This means that when a numerical quantity lar-
ger than a single byte is transmitted, the MOST significant byte is sent first. So for example:

♦ 16 - bits 0x1234 would be 0x12 0x34

♦ 32 - bits 0x12345678L would be 0x12 0x34 0x56 0x78

Interpretation of Reference Numbers
MODBUS bases its data model on a series of tables which have distinguishing characteristics. The four primary tables are:

♦ input discrete — single bit, provided by an I/O system, read-only

♦ output discrete — single bit, alterable by an application program, read-write

♦ input registers — 16-bit quantity, provided by an I/O system, read-only

♦ output registers — 16-bit quantity, alterable by an application program, read-write

The distinction between inputs and outputs, and between bit-addressable and word-addressable data items, does not imply
any application behavior. It is perfectly acceptable, and very common, to regard all four tables as overlaying one another if
this is the most natural interpretation on the target machine in question.

For each of the primary tables, the protocol allows individual selection of 65,536 data items, and the operations of read or
write of those items are designed to span multiple consecutive data items up to a data size limit that is dependent on the
transaction function code.

There is no assumption that the data items represent a contiguous array of data, although that is the interpretation used by
most simple PLCs.

The ‘read and write general reference’ function codes are defined to carry a 32 bit reference number and could be used to
allow direct access to data items within a very large space. Today, there are no PLC devices that take advantage of that.

One potential source of confusion is the relationship between the reference numbers used in MODBUS functions and the
register numbers used in Modicon PLCs. For historical reasons, user reference numbers were expressed as decimal num-
bers with a starting offset of 1. However, MODBUS uses the more natural software interpretation of an unsigned integer
index starting at zero.

So a MODBUS message requesting the read of a register at offset 0 would return the value known to the application pro-
grammer as found in register 4:00001. (memory type 4 = output register, reference 00001)

Implied Length Philosophy
All MODBUS requests and responses are designed in such a way that the recipient can verify that a message is complete.
For function codes where the request and response are of fixed length, the function code alone is sufficient. For function
codes carrying a variable amount of data in the request or response, the data portion will be preceded by a byte count.

When MODBUS is carried over TCP, additional length information is carried in the prefix to allow the recipient to recognize
message boundaries even if the message had to be split into multiple packets for transmission. The existence of explicit
and implicit length rules, and the use of a CRC-32 error check code (on Ethernet), results in an infinitesimal chance of un-
detected corruption to a request or response message.

3

 4

Conformance Class Summary
When defining a new protocol from scratch, it is possible to enforce consistency of numbering and interpretation. MOD-
BUS, by its nature, is implemented already in many places, and disruption to existing implementations must be avoided.

Therefore, the existing set of transaction types have been classified into conformance classes where level 0 represents
functions that are universally implemented and totally consistent and level 2 represents useful functions with some idio-
syncrasies. Those functions of the present set that are not suitable for interoperability are also identified.

Note that future extensions to this standard may define additional function codes to handle situations where the existing
de-facto standard is deficient. However, it would be misleading for details of such proposed extensions to appear in this
document. It will always be possible to determine if a particular target device supports a particular function code by send-
ing it speculatively and checking for the type of exception response, if any. This approach will guarantee the continued
interoperability of current MODBUS devices with the introduction of any such extensions. Indeed, this is the philosophy
that has led to the current function code classification.

Class 0
This is the minimum useful set of functions for both a MASTER and a SLAVE.

♦ read multiple registers (fc 3)

♦ write multiple registers (fc 16)

Class 1
This function typically has a different meaning for each slave family.

♦ read coils (fc 1)

♦ read input discretes (fc 2)

♦ read input registers (fc 4)

♦ write coil (fc 5)

♦ write single register (fc 6)

♦ read exception status (fc 7)

Class 2
These are the data transfer functions needed for routine operations such as HMI and supervision.

♦ force multiple coils (fc 15)

♦ read general reference (fc 20)

This function has the ability to handle multiple simultaneous requests, and can accept a reference number of 32 bits.
Current 584 and 984 PLC’s only use this function to accept references of type 6 (extended register files). This function
would be the most appropriate to extend to handle large register spaces and data items which currently lack reference
numbers such as un-located variables.

4

 5

♦ write general reference (fc 21)

This function has the ability to handle multiple simultaneous requests, and can accept a reference number of 32 bits.
Current 584 and 984 PLC’s only use this function to accept references of type 6 (extended register files). This function
would be the most appropriate to extend to handle large register spaces and data items which currently lack reference
numbers such as un-located variables.

♦ mask write register (fc 22)

♦ read/write registers (fc 23)

This function allows the input of a range of registers and the output of a range of registers as a single transaction. It is
the most efficient way, using MODBUS, to perform a regular exchange of a state image, such as with an I/O module.
Thus, a high performance but versatile data collection device might choose to implement functions 3, 16 and 23 to com-
bine rapid regular exchange of data (23) with the ability to perform on-demand interrogations or updates of particular
data items (3 and 16)

♦ read FIFO queue (fc 24)

This function is a somewhat specialized function intended to allow the transfer of data from a table structured as a FIFO
(for use with the FIN and FOUT function blocks on the 584/984) to a host computer. It is useful in certain types of event-
logging applications.

Machine/Vendor/Network-Specific Functions
All of the following functions, although mentioned in the MODBUS protocol manuals, are not appropriate for interopera-
bility purposes because they are too machine-dependent.

♦ diagnostics (fc 8)

♦ program (484) (fc 9)

♦ poll (484) (fc 10)

♦ get comm event counters (MODBUS) (fc 11)

♦ get comm event log (MODBUS) (fc 12)

♦ program (584/984) (fc 13)

♦ poll (584/984) (fc 14)

♦ report slave ID (fc 17)

♦ program (884/u84) (fc 18)

♦ reset comm link (884/u84) (fc 19)

♦ program (ConCept) (fc 40)

♦ firmware replacement (fc 125)

♦ program (584/984) (fc 126)

♦ report local address (MODBUS) (fc 127)

5

 6

Protocol Structure
This section describes the general form of encapsulation of a MODBUS request or response when carried on the MOD-
BUS network. It is important to note that the structure of the request and response body, from the function code to the
end of the data portion, have exactly the same layout and meaning as in the other MODBUS variants, such as:

♦ MODBUS serial port - ASCII encoding

♦ MODBUS serial port - RTU (binary) encoding

♦ MODBUS PLUS network - data path

The only differences in these cases are the forms of any framing sequence, error check pattern, and address interpreta-
tion. All requests are sent via TCP on registered port 502.

Requests are normally sent in half-duplex fashion on a given connection. That is, there is no benefit to sending additional
requests on a single connection while a response is outstanding. Devices that wish to obtain high peak transfer rates are
instead encouraged to establish multiple TCP connections to the same target. Some existing client devices are known to
attempt to ‘pipeline’ requests.

The MODBUS slave address field is replaced by a single byte Unit Identifier that may be used to communicate via de-
vices such as bridges and gateways, which use a single IP address to support multiple independent end units.

The request and response are prefixed by six bytes.

♦ byte 0: transaction identifier — copied by server, usually 0

♦ byte 1: transaction identifier — copied by server, usually 0

♦ byte 2: protocol identifier — 0

♦ byte 3: protocol identifier — 0

♦ byte 4: length field (upper byte) — 0 (all messages are smaller than 256)

♦ byte 5: length field (lower byte) — number of bytes following

♦ byte 6: unit identifier — previously slave address

♦ byte 7: MODBUS function code

♦ byte 8+: data as needed

So an example transaction to read 1 register at offset 4 from UI 9 returning a value of 5 would be:

♦ request: 00 00 00 00 00 06 09 03 00 04 00 01

♦ response: 00 00 00 00 00 05 09 03 02 00 05

Keep reading for examples of the use of each of the function codes in conformance classes 0-2.

Designers familiar with MODBUS should note that the CRC-16 or LRC check fields are NOT needed in MODBUS. The
TCP/IP and link layer (e.g.. Ethernet) checksum mechanisms are used to verify accurate delivery of the packet.

6

 7

Protocol Reference by Conformance Class
Note that in these examples, the request and response are listed from the function code byte onwards. As said before,
there will be a transport-dependent prefix which, in the case of MODBUS, comprises the seven bytes

♦ ref ref 00 00 00 len unit

The “ref ref” above is two bytes of transaction reference number that have no value at the server but are copied verbatim
from request to response for the convenience of the client. Simple clients usually choose to leave the values at zero.

In the examples, the format for a request and response is given as follows (the example is for a ‘read register’ request,
see detail in later section):

♦ 03 00 00 00 01 => 03 02 12 34

This represents a hexadecimal series of bytes to be appended to the prefix, so the full message on the TCP connection,
assuming unit identifier 09 again, would be:

♦ request: 00 00 00 00 00 06 09 03 00 00 00 01

♦ response: 00 00 00 00 00 05 09 03 02 12 34

All of these requests and responses were verified by using an automatic tool querying a current specification Modicon
Quantum PLC.

Class 0 Commands Detail

Read multiple registers (FC 3)

Request
Byte 0: FC = 03

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response
Byte 0: FC = 03

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions
Byte 0: FC = 83 (hex)

Byte 1: exception code = 01 or 02

Example
Read 1 register at reference 0 (40001 in Modicon 984) resulting in value 1234 hex

03 00 00 00 01 => 03 02 12 34

7

 8

Write multiple registers (FC 16)

Request
Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count (1-100)

Byte 5: Byte count (B=2 x word count)

Byte 6-(B+5): Register values

Response
Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count

Exceptions
Byte 0: FC = 90 (hex)

Byte 1: exception code = 01 or 02

Example
Write 1 register at reference 0 (40001 in Modicon 984) of value 1234 hex

10 00 00 00 01 02 12 34 => 10 00 00 00 01

Class 1 Commands Detail

Read coils (FC 1)

Request
Byte 0: FC = 01

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response
Byte 0: FC = 01

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions
Byte 0: FC = 81 (hex)

Byte 1: exception code = 01 or 02

Example
Read 1 coil at reference 0 (00001 in Modicon 984) resulting in value 1

01 00 00 00 01 => 01 01 01

Note that the format of the return data is not consistent with a big-endian architecture. Note also that this request can be
very computation-intensive on the slave if the request calls for multiple words and they are not aligned on 16-bit bounda-
ries.

8

 9

Read input discretes (FC 2)

Request
Byte 0: FC = 02

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response
Byte 0: FC = 02

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions
Byte 0: FC = 82 (hex)

Byte 1: exception code = 01 or 02

Example
Read 1 discrete input at reference 0 (10001 in Modicon 984) resulting in value 1

02 00 00 00 01 => 02 01 01

Note that the format of the return data is not consistent with a big-endian architecture. Note also that this request can be
very computation-intensive on the slave if the request calls for multiple words and they are not aligned on 16-bit bounda-
ries.

Read input registers (FC 4)

Request
Byte 0: FC = 04

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response
Byte 0: FC = 04

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions
Byte 0: FC = 84 (hex)

Byte 1: exception code = 01 or 02

Example
Read 1 input register at reference 0 (30001 in Modicon 984) resulting in value 1234 hex

04 00 00 00 01 => 04 02 12 34

9

 10

Write coil (FC 5)

Request
Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF

Byte 4: = 00

Response
Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF (echoed)

Byte 4: = 00

Exceptions
Byte 0: FC = 85 (hex)

Byte 1: exception code = 01 or 02

Example
Write 1 coil at reference 0 (00001 in Modicon 984) to the

value 1

05 00 00 FF 00 => 05 00 00 FF 00

Write single register (FC 6)

Request
Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Response
Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Exceptions
Byte 0: FC = 86 (hex)

Byte 1: exception code = 01 or 02

Example
Write 1 register at reference 0 (40001 in Modicon 984) of value 1234 hex

06 00 00 12 34 => 06 00 00 12 34

10

 11

Read exception status (FC 7)

Note that ‘exception status’ has nothing to do with ‘exception response’. The ‘read exception status’ message was in-
tended to allow maximum responsiveness in the early MODBUS polled multidrop networks using slow baud rates. PLC’s
would typically map a range of 8 coils (output discretes) which would be interrogated using this message.

Request
Byte 0: FC = 07

Response
Byte 0: FC = 07

Byte 1: Exception status (usually a predefined range of 8 coils)

Exceptions
Byte 0: FC = 87 (hex)

Byte 1: exception code = 01 or 02

Example
Read exception status resulting in value 34 hex

07 => 07 34

Class 2 Commands Detail

Force multiple coils (FC 15)

Request
Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count (1-800)

Byte 5: Byte count (B = (bit count + 7)/8)

Byte 6-(B+5): Data to be written (least significant bit = first coil)

Response
Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count

Exceptions
Byte 0: FC = 8F (hex)

Byte 1: exception code = 01 or 02

Example
Write 3 coils at reference 0 (00001 in Modicon 984) to values 0,0,1

0F 00 00 00 03 01 04 => 0F 00 00 00 03

Note that the format of the input data is not consistent with a big-endian architecture. Note also that this request can be
very computation-intensive on the slave if the request calls for multiple words and they are not aligned on 16-bit bounda-
ries.

11

 12

Read general reference (FC 20)

Request
Byte 0: FC = 14 (hex)

Byte 1: Byte count for remainder of request (=7 x number of groups)

Byte 2: Reference type for first group = 06 for 6xxxx extended register files

Byte 3-6: Reference number for first group

= file number:offset for 6xxxx files

= 32 bit reference number for 4xxxx registers

Byte 7-8: Word count for first group

Bytes 9-15: (as for bytes 2-8, for 2nd group)

Response
Byte 0: FC = 14 (hex)

Byte 1: Overall byte count of response

(=number of groups + sum of byte counts for groups)

Byte 2: Byte count for first group (B1=1 + (2 x word count))

Byte 3: Reference type for first group

Byte 4-(B1+2): Register values for first group

Byte (B1+3): Byte count for second group (B2=1 + (2 x word count))

Byte (B1+4): Reference type for second group

Byte (B1+5)-(B1+B2+2): Register values for second group

Exceptions
Byte 0: FC = 94 (hex)

Byte 1: exception code = 01 or 02 or 03 or 04

Example
Read 1 extended register at reference 1:2 (File 1 offset 2 in Modicon 984) resulting in value 1234 hex

14 07 06 00 01 00 02 00 01 => 14 04 03 06 12 34

(future)

Read 1 register at reference 0 returning 1234 hex, and 2 registers at reference 5 returning 5678 and 9abc hex

14 0E 04 00 00 00 00 00 01 04 00 00 00 05 00 02 => 14 0A 03 04 12 34 05 04 56 78 9A BC

Note that the transfer size limits are difficult to define in a mathematical formula. Broadly, the message sizes for request
and response are each limited to 256 bytes for buffer size reasons, and the aggregate size of the individual request and
response data frames must be considered. Exception type 04 will be generated if the slave is unwilling to process the
message because the response would be too large.

12

 13

Write general reference (FC 21)

Request
Byte 0: FC = 15 (hex)

Byte 1: Byte count for remainder of request

Byte 2: Reference type for first group = 06 for 6xxxx extended register files

Byte 3-6: Reference number for first group

= file number:offset for 6xxxx files

= 32 bit reference number for 4xxxx registers

Byte 7-8: Word count for first group (W1)

Byte 9-(8 + 2 x W1): Register data for first group

(copy group data frame from byte 2 on for any other groups)

Response
Response is a direct echo of the query

Byte 0: FC = 15 (hex)

Byte 1: Byte count for remainder of request

Byte 2: Reference type for first group = 06 for 6xxxx extended register files

Byte 3-6: Reference number for first group

= file number:offset for 6xxxx files

= 32 bit reference number for 4xxxx registers

Byte 7-8: Word count for first group (W1)

Byte 9-(8 + 2 x W1): Register data for first group

(copy group data frame from byte 2 on for any other groups)

Exceptions
Byte 0: FC = 95 (hex)

Byte 1: exception code = 01 or 02 or 03 or 04

Example
Write 1 extended register at reference 1:2 (File 1 offset 2 in Modicon 984) to value 1234 hex

15 09 06 00 01 00 02 00 01 12 34 => 15 09 06 00 01 00 02 00 01 12 34

(future)

Write 1 register at reference 0 to value 1234 hex, and 2 registers at reference 5 to values 5678 and 9abc hex

15 14 04 00 00 00 00 00 01 12 34 04 00 00 00 05 00 02 56 78 9A BC

=>15 14 04 00 00 00 00 00 01 12 34 04 00 00 00 05 00 02 56 78 9A BC

Note that the transfer size limits are difficult to define in a mathematical formula. Broadly, the message sizes for request
and response are each limited to 256 bytes for buffer size reasons, and the aggregate size of the individual request and
response data frames must be considered. Exception type 04 will be generated if the slave is unwilling to process the
message because the response would be too large.

13

 14

Mask write register (FC 22)

Request
Byte 0: FC = 16 (hex)

Byte 1-2: Reference number

Byte 3-4: AND mask to be applied to register

Byte 5-6: OR mask to be applied to register

Response
Byte 0: FC = 16 (hex)

Byte 1-2: Reference number

Byte 3-4: AND mask to be applied to register

Byte 5-6: OR mask to be applied to register

Exceptions
Byte 0: FC = 96 (hex)

Byte 1: exception code = 01 or 02

Example
Change the field in bits 0-3 of register at reference 0 (40001 in Modicon 984) to value 4 hex

(AND with 000F, OR with 0004)

16 00 00 00 0F 00 04 => 16 00 00 00 0F 00 04

Read/write registers (FC 23)

Request
Byte 0: FC = 17 (hex)

Byte 1-2: Reference number for read

Byte 3-4: Word count for read (1-125)

Byte 5-6: Reference number for write

Byte 7-8: Word count for write (1-100)

Byte 9: Byte count (B = 2 x word count for write)

Byte 10-(B+9): Register values

Response
Byte 0: FC = 17 (hex)

Byte 1: Byte count(B = 2 x word count for read)

Byte 2-(B+1) Register values

Exceptions
Byte 0: FC = 97 (hex)

Byte 1: exception code = 01 or 02

Example
Write 1 register at reference 3 (40004 in Modicon 984) of value 0123 hex and read 2 registers at reference 0 returning
values 0004 and 5678 hex

14

 15

17 00 00 00 02 00 03 00 01 02 01 23 => 17 04 00 04 56 78

Note that if the register ranges for writing and reading overlap, the results are undefined. Some devices implement the
write before the read, but others implement the read before the write.

Read FIFO queue (FC 24)

Request
Byte 0: FC = 18 (hex)

Byte 1-2: Reference number

Response
Byte 0: FC = 18 (hex)

Byte 1-2: Byte count (B = 2 + word count) (maximum 64)

Byte 3-4: Word count (number of words accumulated in FIFO) (maximum 31)

Byte 5-(B+2): Register data from front of FIFO

Exceptions
Byte 0: FC = 98 (hex)

Byte 1: exception code = 01 or 02 or 03

Example
Read contents of FIFO block starting at reference 0005 (40006 in Modicon 984) which contains 2 words of value 1234
and 5678 hex outstanding

18 00 05 => 18 00 06 00 02 12 34 56 78

Note that this function as implemented on the 984 is very limited in versatility - the block of registers is assumed to con-
sist of a count which can have values from 0 to 31, followed by up to 31 words of data. When the function completes, the
count word is NOT reset to zero, as might have been expected from a FIFO operation.

All in all, this should be considered a limited subset of fn 16 - read multiple registers, since the latter can be used to per-
form all of the required functionality.

Exception Codes
There is a defined set of exception codes to be returned by slaves in the event of problems. Note that masters may send
out commands ‘speculatively’, and use the success or exception codes received to determine which MODBUS com-
mands the device is willing to respond to and to determine the size of the various data regions available on the slave.

All exceptions are signaled by adding 0x80 to the function code of the request, and following this byte by a single reason
byte for example as follows:

03 12 34 00 01 => 83 02

request read 1 register at index 0x1234 response exception type 2 - ‘illegal data address’

The list of exceptions follows:

01 ILLEGAL FUNCTION
The function code received in the query is not an allowable action for the slave. This may be because the function code
is only applicable to newer controllers, and was not implemented in the unit selected. It could also indicate that the slave
is in the wrong state to process a request of this type, for example because it is unconfigured and is being asked to re-
turn register values.

15

 16

02 ILLEGAL DATA ADDRESS
The data address received in the query is not an allowable address for the slave. More specifically, the combination of
reference number and transfer length is invalid. For a controller with 100 registers, a request with offset 96 and length 4
would succeed, a request with offset 96 and length 5 will generate exception 02.

03 ILLEGAL DATA VALUE
A value contained in the query data field is not an allowable value for the slave. This indicates a fault in the structure of
the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a
data item submitted for storage in a register has a value outside the expectation of the application program, since the
MODBUS protocol is unaware of the significance of any particular value of any particular register.

04 ILLEGAL RESPONSE LENGTH
Indicates that the request as framed would generate a response whose size exceeds the available MODBUS data size.
Used only by functions generating a multi-part response, such as functions 20 and 21.

05 ACKNOWLEDGE
Specialized use in conjunction with programming commands

06 SLAVE DEVICE BUSY
Specialized use in conjunction with programming commands

07 NEGATIVE ACKNOWLEDGE
Specialized use in conjunction with programming commands

08 MEMORY PARITY ERROR
Specialized use in conjunction with function codes 20 and 21, to indicate that the extended file area failed to pass a con-
sistency check.

0A GATEWAY PATH UNAVAILABLE
Specialized use in conjunction with MODBUS Plus gateways, indicates that the gateway was unable to allocate a MOD-
BUS Plus PATH to use to process the request. Usually means that the gateway is misconfigured.

0B GATEWAY TARGET DEVICE FAILED TO RESPOND
Specialized use in conjunction with MODBUS Plus gateways, indicates that no response was obtained from the target
device. Usually means that the device is not present on the network.

16

	Introduction

	Connection-Oriented

	Data Encoding

	Interpretation of Reference Numbers

	Implied Length Philosophy

	Conformance Class Summary

	Class 0

	Class 1

	Class 2

	Machine/Vendor/Network-Specific Functions

	Protocol Structure

	Protocol Reference by Conformance Class

	Class 0 Commands Detail

	Read multiple registers (FC 3)

	Write multiple registers (FC 16)

	Class 1 Commands Detail

	Read coils (FC 1)

	Read input discretes (FC 2)

	Read input registers (FC 4)

	Write coil (FC 5)

	Write single register (FC 6)

	Read exception status (FC 7)

	Class 2 Commands Detail

	Force multiple coils (FC 15)

	Read general reference (FC 20)

	Write general reference (FC 21)

	Mask write register (FC 22)

	Read/write registers (FC 23)

	Read FIFO queue (FC 24)

	Exception Codes

